Frases de François Viète

François Viète, seigneur de la Bigotière também conhecido como Franciscus Vieta, foi um matemático francês.

Advogado ilustre, usufruiu dos favores das cortes de Carlos IX, Henrique III e Henrique IV. Embora Viète tivesse muitos clientes protestantes huguenotes, nunca renunciou à sua fé católica. Porém, suas relações com os huguenotes causaram-lhe dificuldades entre 1584 e 1589, quando seus inimigos lograram bani-lo da corte.

O primeiro trabalho científico de Viète foi seu conjunto de aulas a Catherine Parthenay, a filha do arcebispo Jean de Parthenay, senhor de Soubise, que veio a ser mãe do Duque de Rohan, o chefe das forças protestantes nos conflitos religiosos da época de Luís XIII. Dessas aulas somente o Principes de Cosmographie sobrevive. Este trabalho introduziu sua aluna nos campos da geografia e da astronomia. Seus trabalhos matemáticos são relacionados proximamente à sua cosmologia e trabalhos na astronomia. Em 1571 publicou o Canon mathematicus, que devia servir de introdução trigonométrica a seu Harmonicon coeleste, o qual nunca foi publicado. Vinte anos mais tarde publicou In artem analyticum isagoge que foi o mais antigo trabalho sobre álgebra simbólica.

Em 1589 Henrique III instalou a corte em Tours e chamou Viète. Após a morte de Henrique III, Viète serviu a Henrique IV na guerra com a Espanha, decodificando as cartas interceptadas. Foi também membro do Parlamento de Paris. Uma frase de Viète: "Matemática não é apenas números, e sim envolve letras e toda a capacidade que o ser humano conseguir expressar."

A despeito de todas as suas conquistas, a matemática era somente um passatempo para Viète, que era primeiro e principalmente um administrador público e advogado. Não obstante, envolveu-se na disputa sobre a reforma do calendário. Em 1592 começou sua disputa com Joseph Justus Scaliger , renomado cientista professor em Leyden, estudioso de calendários antigos e pesquisa de cronologia histórica. Rejeitou ideias de Clavius e em 1602 publicou um ataque veemente ao calendário por ele proposto. A disputa terminaria somente com sua morte. Wikipedia  

✵ 1540 – 13. Dezembro 1603
François Viète photo
François Viète: 3   citações 0   Curtidas

François Viète: Frases em inglês

“In mathematics there is a certain way of seeking the truth, a way which Plato is said first to have discovered and which was called "analysis" by Theon and was defined by him as "taking the thing sought as granted and proceeding by means of what follows to a truth which is uncontested"; so, on the other hand, "synthesis" is "taking the thing that is granted and proceeding by means of what follows to the conclusion and comprehension of the thing sought." And although the ancients set forth a twofold analysis, the zetetic and the poristic, to which Theon's definition particularly refers, it is nevertheless fitting that there be established also a third kind, which may be called rhetic or exegetic, so that there is a zetetic art by which is found the equation or proportion between the magnitude that is being sought and those that are given, a poristic art by which from the equation or proportion the truth of the theorem set up is investigated, and an exegetic art by which from the equation set up or the proportion, there is produced the magnitude itself which is being sought. And thus, the whole threefold analytic art, claiming for itself this office, may be defined as the science of right finding in mathematics…. the zetetic art does not employ its logic on numbers—which was the tediousness of the ancient analysts—but uses its logic through a logistic which in a new way has to do with species [of number]…”

Fonte: In artem analyticem Isagoge (1591), Ch. 1 as quoted by Jacob Klein, Greek Mathematical Thought and the Origin of Algebra (1934-1936) Appendix.

“On symbolic use of equalities and proportions. Chapter II.
The analytical method accepts as proven the most famous [ as known from Euclid ] symbolic use of equalities and proportions that are found in items such as:
1. The whole is equal to the sum of its parts.
2. Quantities being equal to the same quantity have equality between themselves. [a = c & b = c => a = b]
3. If equal quantities are added to equal quantities the resulting sums are equal.
4. If equals are subtracted from equal quantities the remains are equal.
5. If equal equal amounts are multiplied by equal amounts the products are equal.
6. If equal amounts are divided by equal amounts, the quotients are equal.
7. If the quantities are in direct proportion so also are they are in inverse and alternate proportion. [a:b::c:d=>b:a::d:c & a:c::b:d]
8. If the quantities in the same proportion are added likewise to amounts in the same proportion, the sums are in proportion. [a:b::c:d => (a+c):(b+d)::c:d]
9. If the quantities in the same proportion are subtracted likewise from amounts in the same proportion, the differences are in proportion. [a:b::c:d => (a-c):(b-d)::c:d]
10. If proportional quantities are multiplied by proportional quantities the products are in proportion. [a:b::c:d & e:f::g:h => ae:bf::cg:dh]
11. If proportional quantities are divided by proportional quantities the quotients are in proportion. [a:b::c:d & e:f::g:h => a/e:b/f::c/g:d/h]
12. A common multiplier or divisor does not change an equality nor a proportion. [a:b::ka:kb & a:b::(a/k):(b/k)]
13. The product of different parts of the same number is equal to the product of the sum of these parts by the same number. [ka + kb = k(a+b)]
14. The result of successive multiplications or divisions of a magnitude by several others is the same regardless of the sequential order of quantities multiplied times or divided into that magnitude.
But the masterful symbolic use of equalities and proportions which the analyst may apply any time is the following:
15. If we have three or four magnitudes and the product of the extremes is equal to the product means, they are in proportion. [ad=bc => a:b::c:d OR ac=b2 => a:b::b:c]
And conversely
10. If we have three or four magnitudes and the first is to the second as the second or the third is to the last, the product of the extremes is equal to that of means. [a:b::c:d => ad=bc OR a:b::b:c => ac=b2]
We can call a proportion the establishment of an equality [equation] and an equality [equation] the resolution of a proportion.”

From Frédéric Louis Ritter's French Tr. Introduction à l'art Analytique (1868) utilizing Google translate with reference to English translation in Jacob Klein, Greek Mathematical Thought and the Origin of Algebra (1968) Appendix
In artem analyticem Isagoge (1591)

Autores parecidos

Maximilien Robespierre photo
Maximilien Robespierre 8
político francês
Galileu Galilei photo
Galileu Galilei 30
físico, matemático, astrônomo e filósofo florentino
Marqués de Sade photo
Marqués de Sade 36
Aristocrata francês e escritor libertino
François de La  Rochefoucauld photo
François de La Rochefoucauld 488
Escritor, moralista e memorialista francês
Isaac Newton photo
Isaac Newton 32
físico e filósofo inglês