Frases de Henri Poincaré

Henri Poincaré foto
14  2

Henri Poincaré

Data de nascimento: 29. Abril 1854
Data de falecimento: 17. Julho 1912
Outros nomes:Анри Пуанкаре

Publicidade

Jules Henri Poincaré foi um matemático, físico e filósofo da ciência francês.

Ingressou na Escola Politécnica em 1873, continuou seus estudos na Escola de Minas sob a tutela de Charles Hermite, e se doutorou em matemática em 1879. Foi nomeado professor de física matemática na Sorbonne , posto que manteve até sua morte. Antes de chegar aos trinta anos desenvolveu o conceito de funções automórficas, que usou para resolver equações diferenciais lineares de segunda ordem com coeficientes algébricos. Em 1895 publicou seu Analysis situs, um tratado sistemático sobre topologia. No âmbito das matemáticas aplicadas estudou numerosos problemas sobre óptica, eletricidade, telegrafia, capilaridade, elasticidade, termodinâmica, mecânica quântica, teoria da relatividade e cosmologia.

Foi descrito com frequência como o último universalista da disciplina matemática. No campo da mecânica elaborou diversos trabalhos sobre as teorias da luz e as ondas eletromagnéticas, e desenvolveu junto a Hendrik Lorentz a teoria da relatividade. A conjectura de Poincaré foi um dos problemas não resolvidos mais desafiantes da topologia algébrica, sendo resolvido apenas em 2003 pelo matemático russo Grigory Perelman, mais de um século após sua proposição; e foi o primeiro a considerar a possibilidade de caos num sistema determinista, em seu trabalho sobre órbitas planetárias. Este trabalho teve pouco interesse até que começou o estudo moderno da dinâmica caótica, em 1963. Em 1889 foi premiado por seus trabalhos sobre o problema dos três corpos.

Alguns de seus trabalhos mais importantes incluem os três volumes de Os novos métodos da mecânica celeste , publicados entre 1892 e 1899, e Lições de mecânica celeste . Também escreveu numerosas obras de divulgação científica que atingiram uma grande popularidade, como Ciência e hipótese , O valor da ciência e Ciência e método .

Citações Henri Poincaré

Publicidade
Publicidade
Publicidade

„Induction applied to the physical sciences is always uncertain, because it rests on the belief in a general order of the universe, an order outside of us.“

— Henri Poincaré
Context: But, one will say, if raw experience can not legitimatize reasoning by recurrence, is it so of experiment aided by induction? We see successively that a theorem is true of the number 1, of the number 2, of the number 3 and so on; the law is evident, we say, and it has the same warranty as every physical law based on observations, whose number is very great but limited. But there is an essential difference. Induction applied to the physical sciences is always uncertain, because it rests on the belief in a general order of the universe, an order outside of us. Mathematical induction, that is, demonstration by recurrence, on the contrary, imposes itself necessarily, because it is only the affirmation of a property of the mind itself.<!--pp.13-14 Ch. I. (1905) Tr. George Bruce Halstead

„The very possibility of the science of mathematics seems an insoluble contradiction.“

— Henri Poincaré
Context: The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A!... Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive?... If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.<!--pp.5-6 Ch. I: On the Nature of Mathematical Reasoning (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead

Próximo