# Frases de G. H. Hardy

## G. H. Hardy

**Data de nascimento:** 7. Fevereiro 1877**Data de falecimento:** 1. Dezembro 1947

Godfrey Harold Hardy foi um matemático inglês.

É conhecido principalmente na teoria dos números e análise matemática. De 1931 a 1942 foi Professor Sadleiriano de Matemática Pura na Universidade de Cambridge.

Publicou o livro autobiográfico A mathematician's Apology , defendendo o valor da matemática pura e da dimensão estética da matemática. Foi escrito no final de sua vida, quando não mais se sentia capaz de produzir "matemática criativa". Seu amigo e biógrafo, C. P. Snow, afirmou na introdução que preparou para a edição do livro que era um "livro de tristeza enorme", o "testamento de um artista criativo".

Seu relacionamento profissional com o matemático indiano Srinivasa Ramanujan e os seus trabalhos publicados em 1914 o tornaram célebre. Hardy imediatamente reconheceu Ramanujan como um aluno de destaque, por seus raciocínios inovadores, e a partir disso, Hardy e Ramanujan começaram a trabalhar conjuntamente. Em uma entrevista feita por Paul Erdős a Hardy, quando Hardy foi questionado sobre qual seria a sua grande contribuição para a matemática, sem hesitar, disse que foi Ramanujan. Ele denominou a parceria de "o único incidente romântico na sua vida".

### Autores parecidos

### Citações G. H. Hardy

### „Mathematicians have constructed a very large number of different systems of geometry, Euclidean or non-Euclidean, of one, two, three, or any number of dimensions. All these systems are of complete and equal validity. They embody the results of mathematicians' observations of their reality, a reality far more intense and far more rigid than the dubious and elusive reality of physics. The old-fashioned geometry of Euclid, the entertaining seven-point geometry of Veblen, the space-times of Minkowski and Einstein, are all absolutely and equally real.... There may be three dimensions in this room and five next door. As a professional mathematician, I have no idea; I can only ask some competent physicist to instruct me in the facts.

The function of a mathematician, then, is simply to observe the facts about his own intricate system of reality, that astonishingly beautiful complex of logical relations which forms the subject-matter of his science, as if he were an explorer looking at a distant range of mountains, and to record the results of his observations in a series of maps, each of which is a branch of pure mathematics.... Among them there perhaps none quite so fascinating, with quite the astonishing contrasts of sharp outline and shade, as that which constitutes the theory of numbers.“

— G. H. Hardy

"The Theory of Numbers," Nature (Sep 16, 1922) Vol. 110 https://books.google.com/books?id=1bMzAQAAMAAJ p. 381

### „Bradman is a whole class above any batsman who has ever lived: if Archimedes, Newton and Gauss remain in the Hobbs class, I have to admit the possibility of a class above them, which I find difficult to imagine. They had better be moved from now on into the Bradman class.“

— G. H. Hardy

Quoted by C. P. Snow in his introduction to reprints of the book.

### „He could remember the idiosyncrasies of numbers in an almost uncanny way. It was Littlewood who said that every positive integer was one of Ramanujan's personal friends. I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."“

— G. H. Hardy

Ch. I : The Indian mathematician Ramanujan.