Werner Heisenberg frases e citações
Werner Heisenberg: Frases em inglês
“Der erste Trunk aus dem Becher der Naturwissenschaft macht atheistisch, aber auf dem Grund des Bechers wartet Gott.” in 15 Jahrhunderte Würzburg: e. Stadt u. ihre Geschichte [15 centuries Würzburg. A city and its history] (1979), p. 205, by Heinz Otremba. Otremba does not declare his source, and the quote per se cannot be found in Heisenberg's published works.
The journalist Eike Christian Hirsch PhD, a personal acquaintance of Heisenberg, whom he interviewed for his 1981 book Expedition in die Glaubenswelt, claimed in de.wikiquote.org on 22 June 2015, that the content and style of the quote was completely foreign to Heisenberg's convictions and the way he used to express himself, and that Heisenberg's children, Dr. Maria Hirsch and Prof. Dr. Martin Heisenberg, did not recognize their father in this quote.
Statements similar to the quote were made by Francis Bacon, in "Of Atheism" (1601): "A little philosophy inclineth man’s mind to atheism; but depth in philosophy bringeth men’s minds about to religion", and Alexander Pope, in "An Essay on Criticism" (1709): "A little learning is a dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and drinking largely sobers us again."
There is a passage in a lengthy essay written by Heisenberg in 1942, "Ordnung der Wirklichkeit” ("Reality and Its Order"), published in Collected Works. Section C: Philosophical and Popular Writings. Volume I. Physics and Cognition. 1927-1955 (1984), that parallels the ideas expressed in the quote (albeit in a much expanded form):
"The first thing we could say was simply: 'I believe in God, the Father, the almighty creator of heaven and earth.' The next step — at least for our contemporary consciousness — was doubt. There is no god; there is only an impersonal law that directs the fate of the world according to cause and effect... And yet [today], we may with full confidence place ourselves into the hands of the higher power who, during our lifetime and in the course of the centuries, determines our faith and therewith our world and our fate." (English translation by M.B.Rumscheidt and N. Lukens, available at http://www.heisenbergfamily.org/t-OdW-english.htm)
Carl Friedrich von Weizsäcker, a protégé of Heisenberg, did publish a version of the quote itself in Die Geschichte der Natur (The History of Nature) (1948), appearing to consider it an adage:
"Aus dem Denken gibt es keinen ehrlichen Rückweg in einen naiven Glauben. Nach einem alten Satz trennt uns der erste Schluck aus dem Becher der Erkenntnis von Gott, aber auf dem Grunde des Bechers wartet Gott auf den, der ihn sucht. Wenn es so ist, dann gibt es einen Weg des Denkens, der vorwärts zu religiösen Wahrheiten führt, und nur diesen Weg zu suchen ist lohnend. Wenn es nicht so ist, wird unsere Welt auf die Religion ihre Hoffnungen vergeblich setzen." ("From thinking there is no honest way back into a naive belief. According to an old phrase, the first sip from the cup of knowledge separates us from God, but at the bottom of the cup God is waiting for the one who seeks him. If so, then there is a way of thinking that leads to religious truths, and to seek only that way is rewarding. If it is not so, our world will put its hopes to religion in vain.")
Misattributed
This has also appeared in the alternate form: "What we observe is not nature itself, but nature exposed to our method of questioning."
Physics and Philosophy (1958)
Variante: What we observe is not nature itself, but nature exposed to our method of questioning.
Fonte: Physics and Philosophy: The Revolution in Modern Science
Physics and Philosophy (1958)
Contexto: Any concepts or words which have been formed in the past through the interplay between the world and ourselves are not really sharply defined with respect to their meaning: that is to say, we do not know exactly how far they will help us in finding our way in the world. We often know that they can be applied to a wide range of inner or outer experience, but we practically never know precisely the limits of their applicability. This is true even of the simplest and most general concepts like "existence" and "space and time". Therefore, it will never be possible by pure reason to arrive at some absolute truth.
The concepts may, however, be sharply defined with regard to their connections. This is actually the fact when the concepts become part of a system of axioms and definitions which can be expressed consistently by a mathematical scheme. Such a group of connected concepts may be applicable to a wide field of experience and will help us to find our way in this field. But the limits of the applicability will in general not be known, at least not completely.
Werner Heisenberg as quoted in Quirks of the Quantum Mind, p. 175, ICRL Press, ISBN 1936033062
"Introductory" in The Physical Principles of the Quantum Theory (1930) as translated by Carl Eckhart and Frank C. Hoyt, p. 10
Contexto: Light and matter are both single entities, and the apparent duality arises in the limitations of our language. It is not surprising that our language should be incapable of describing the processes occurring within the atoms, for, as has been remarked, it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. Furthermore, it is very difficult to modify our language so that it will be able to describe these atomic processes, for words can only describe things of which we can form mental pictures, and this ability, too, is a result of daily experience. Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme — the quantum theory — which seems entirely adequate for the treatment of atomic processes; for visualisation, however, we must content ourselves with two incomplete analogies — the wave picture and the corpuscular picture.
Physics and Philosophy (1958)
Contexto: [I]n the Copenhagen interpretation of quantum theory we can indeed proceed without mentioning ourselves as individuals, but we cannot disregard the fact that natural science is formed by men. Natural science does not simply describe and explain nature; it is part of the interplay between nature and ourselves; it describes nature as exposed to our nature of questioning. This was a possibility of which Descartes could not have thought, but it makes a sharp separation between the world and the I impossible.
If one follows the great difficulty which even eminent scientists like Einstein had in understanding and accepting the Copenhagen interpretation... one can trace the roots... to the Cartesian partition.... it will take a long time for it [this partition] to be replaced by a really different attitude toward the problem of reality. <!--p. 81
Physics and Philosophy (1958)
Fonte: Physics and Philosophy: The Revolution in Modern Science
Contexto: Whenever we proceed from the known into the unknown we may hope to understand, but we may have to learn at the same time a new meaning of the word "understanding."
“After a great war, history is written by the victors and legends develop which glorify them.”
from p. 35 of "The Third Reich and The Atomic Bomb [Review of The Virus House by David Irving]" in The Bulletin of the Atomic Scientists (Pp. 34-35, June 1968), translated from the German by Margaret Seckel.
The Development of Quantum Mechanics (1933)
Contexto: The interest of research workers has frequently been focused on the phenomenon of regularly shaped crystals suddenly forming from a liquid, e. g. a supersaturated salt solution. According to the atomic theory the forming force in this process is to a certain extent the symmetry characteristic of the solution to Schrödinger's wave equation, and to that extent crystallization is explained by the atomic theory. Nevertheless this process retains a statistical and — one might almost say — historical element which cannot be further reduced: even when the state of the liquid is completely known before crystallization, the shape of the crystal is not determined by the laws of quantum mechanics. The formation of regular shapes is just far more probable than that of a shapeless lump. But the ultimate shape owes its genesis partly to an element of chance which in principle cannot be analysed further.
Physics and Philosophy (1958)
Contexto: But the resemblance of the modern views to those of Plato and the Pythagoreans can be carried somewhat further. The elementary particles in Plato's Timaeus are finally not substance but mathematical forms. "All things are numbers" is a sentence attributed to Pythagoras. The only mathematical forms available at that time were such geometric forms as the regular solids or the triangles which form their surface. In modern quantum theory there can be no doubt that the elementary particles will finally also be mathematical forms but of a much more complicated nature.
“If nature leads us to mathematical forms of great simplicity and beauty”
Conversation with Einstein, as quoted in Bittersweet Destiny: The Stormy Evolution of Human Behavior by Del Thiessen
Contexto: If nature leads us to mathematical forms of great simplicity and beauty—by forms I am referring to coherent systems of hypothesis, axioms, etc.—to forms that no one has previously encountered, we cannot help thinking that they are "true," that they reveal a genuine feature of nature... You must have felt this too: The almost frightening simplicity and wholeness of relationships which nature suddenly spreads out before us and for which none of us was in the least prepared.
“The Greek philosophers thought of static forms”
Physics and Philosophy (1958)
Contexto: The Greek philosophers thought of static forms and found them in the regular solids. Modern science, however, has from its beginning in the sixteenth and seventeenth centuries started from the dynamic problem. The constant element in physics since Newton is not a configuration or a geometrical form, but a dynamic law.<!-- p. 72
Physics and Philosophy (1958)
Contexto: The physicist may be satisfied when he has the mathematical scheme and knows how to use for the interpretation of the experiments. But he has to speak about his results also to non-physicists who will not be satisfied unless some explanation is given in plain language. Even for the physicist the description in plain language will be the criterion of the degree of understanding that has been reached.
Physics and Philosophy (1958)
Contexto: The words "position" and "velocity" of an electron... seemed perfectly well defined... and in fact they were clearly defined concepts within the mathematical framework of Newtonian mechanics. But actually they were not well defined, as seen from the relations of uncertainty. One may say that regarding their position in Newtonian mechanics they were well defined, but in their relation to nature, they were not. This shows that we can never know beforehand which limitations will be put on the applicability of certain concepts by the extension of our knowledge into the remote parts of nature, into which we can only penetrate with the most elaborate tools. Therefore, in the process of penetration we are bound sometimes to use our concepts in a way which is not justified and which carries no meaning. Insistence on the postulate of complete logical clarification would make science impossible. We are reminded... of the old wisdom that one who insists on never uttering an error must remain silent.
The Development of Quantum Mechanics (1933)
Contexto: However the development proceeds in detail, the path so far traced by the quantum theory indicates that an understanding of those still unclarified features of atomic physics can only be acquired by foregoing visualization and objectification to an extent greater than that customary hitherto. We have probably no reason to regret this, because the thought of the great epistemological difficulties with which the visual atom concept of earlier physics had to contend gives us the hope that the abstracter atomic physics developing at present will one day fit more harmoniously into the great edifice of Science.
Physics and Philosophy (1958)
Contexto: The words "position" and "velocity" of an electron... seemed perfectly well defined... and in fact they were clearly defined concepts within the mathematical framework of Newtonian mechanics. But actually they were not well defined, as seen from the relations of uncertainty. One may say that regarding their position in Newtonian mechanics they were well defined, but in their relation to nature, they were not. This shows that we can never know beforehand which limitations will be put on the applicability of certain concepts by the extension of our knowledge into the remote parts of nature, into which we can only penetrate with the most elaborate tools. Therefore, in the process of penetration we are bound sometimes to use our concepts in a way which is not justified and which carries no meaning. Insistence on the postulate of complete logical clarification would make science impossible. We are reminded... of the old wisdom that one who insists on never uttering an error must remain silent.
“Can nature possibly be so absurd as it seemed to us in these atomic experiments?”
Physics and Philosophy (1958)
Contexto: I remember discussions with Bohr which went through many hours till very late at night and ended almost in despair; and when at the end of the discussion I went alone for a walk in the neighbouring park I repeated to myself again and again the question: Can nature possibly be so absurd as it seemed to us in these atomic experiments?
Physics and Philosophy (1958)
Contexto: The equation of motion holds at all times, it is in this sense eternal, whereas the geometrical forms, like the orbits, are changing. Therefore, the mathematical forms that represent the elementary particles will be solutions of some eternal law of motion for matter. Actually this is a problem which has not yet been solved.<!-- p. 72
Physics and Philosophy (1958)
Contexto: But the resemblance of the modern views to those of Plato and the Pythagoreans can be carried somewhat further. The elementary particles in Plato's Timaeus are finally not substance but mathematical forms. "All things are numbers" is a sentence attributed to Pythagoras. The only mathematical forms available at that time were such geometric forms as the regular solids or the triangles which form their surface. In modern quantum theory there can be no doubt that the elementary particles will finally also be mathematical forms but of a much more complicated nature.
Physics and Philosophy (1958)
Contexto: The law of causality is no longer applied in quantum theory and the law of conservation of matter is no longer true for the elementary particles. Obviously Kant could not have foreseen the new discoveries, but since he was convinced that his concepts would be "the basis of any future metaphysics that can be called science" it is interesting to see where his arguments have been wrong.
Physics and Philosophy (1958)
Contexto: In the philosophy of Democritus the atoms are eternal and indestructible units of matter, they can never be transformed into each other. With regard to this question modern physics takes a definite stand against the materialism of Democritus and for Plato and the Pythagoreans. The elementary particles are certainly not eternal and indestructible units of matter, they can actually be transformed into each other. As a matter of fact, if two such particles, moving through space with a very high kinetic energy, collide, then many new elementary particles may be created from the available energy and the old particles may have disappeared in the collision. Such events have been frequently observed and offer the best proof that all particles are made of the same substance: energy. <!-- p. 71
“The equation of motion holds at all times, it is in this sense eternal”
Physics and Philosophy (1958)
Contexto: The equation of motion holds at all times, it is in this sense eternal, whereas the geometrical forms, like the orbits, are changing. Therefore, the mathematical forms that represent the elementary particles will be solutions of some eternal law of motion for matter. Actually this is a problem which has not yet been solved.<!-- p. 72
“Some subjects are so serious that one can only joke about them.”
Sometimes attributed to Heisenberg, this was actually a statement made by Niels Bohr, as quoted in The Genius of Science: A Portrait Gallery (2000) by Abraham Pais, p. 24
Some things are so serious that one can only joke about them.
Variant without any citation as to author in Denial is not a river in Egypt (1998) by Sandi Bachom, p. 85
Misattributed
Ein Fachmann ist ein Mann, der einige der gröbsten Fehler kennt, die man in dem betreffenden Fach machen kann, und der sie deshalb zu vermeiden versteht.
Der Teil und das Ganze. Gespräche im Umkreis der Atomphysik (1969); also in "Kein Chaos, aus dem nicht wieder Ordnung würde", Die Zeit No. 34 (22 August 1969); as translated in Physics and Beyond : Encounters and Conversation (1971)
Die Quantentheorie ist so ein wunderbares Beispiel dafür, daß man einen Sachverhalt in völliger Klarheit verstanden haben kann und gleichzeitig doch weiß, daß man nur in Bildern und Gleichnissen von ihm reden kann.
Der Teil und das Ganze. Gespräche im Umkreis der Atomphysik (1969); also in "Kein Chaos, aus dem nicht wieder Ordnung würde", Die Zeit No. 34 (22 August 1969) http://www.zeit.de/1969/34/kein-chaos-aus-dem-nicht-wieder-ordnung-wuerde/komplettansicht; as translated in Physics and Beyond : Encounters and Conversation (1971)