„Diophantos lived in a period when the Greek mathematicians of great original power had been succeeded by a number of learned commentators, who confined their investigations within the limits already reached, without attempting to further the development of the science. To this general rule there are two most striking exceptions, in different branches of mathematics, Diophantos and Pappos. These two mathematicians, who would have been an ornament to any age, were destined by fate to live and labour at a time when their work could not check the decay of mathematical learning. There is scarcely a passage in any Greek writer where either of the two is so much as mentioned. The neglect of their works by their countrymen and contemporaries can be explained only by the fact that they were not appreciated or understood. The reason why Diophantos was the earliest of the Greek mathematicians to be forgotten is also probably the reason why he was the last to be re-discovered after the Revival of Learning. The oblivion, in fact, into which his writings and methods fell is due to the circumstance that they were not understood. That being so, we are able to understand why there is so much obscurity concerning his personality and the time at which he lived. Indeed, when we consider how little he was understood, and in consequence how little esteemed, we can only congratulate ourselves that so much of his work has survived to the present day.“

—  Thomas Little Heath, Historical Introduction, p.17
Thomas Little Heath photo
Thomas Little Heath45
British civil servant and academic 1861 - 1940
Publicidade

Citações relacionadas

Jean-Étienne Montucla photo

„There is reason, however, to think that the author would have rendered it much more interesting, and have carried it to si higher degree of perfection, had he lived in an age more enlightened and better informed in regard to the mathematics and natural philosophy. Since the death of that mathematician, indeed, the arts and sciences have been so much improved, that what in his time might have been entitled to the character of mediocrity, would not at present be supportable. How many new discoveries in every part of philosophy? How many new phenomena observed, some of which have even given birth to the most fertile branches of the sciences? We shall mention only electricity, an inexhaustible source of profound reflection, and of experiments highly amusing. Chemistry also is a science, the most common and slightest principles of which were quite unknown to Ozanam. In short, we need not hesitate to pronounce that Ozanam's work contains a multitude of subjects treated of with an air of credulity, and so much prolixity, that it appears as if the author, or rather his continuators, had no other object in view than that of multiplying the volumes.
To render this work, then, more worthy of the enlightened agt in which we live, it was necessary to make numerous corrections and considerable additions. A task which we have endeavoured to discharge with all diligence“

—  Jean-Étienne Montucla French mathematician 1725 - 1799
p. vi; As cited in: Tobias George Smollett. The Critical Review: Or, Annals of Literature http://books.google.com/books?id=T8APAAAAQAAJ&pg=PA412, Volume 38, (1803), p. 412

Publicidade
George Pólya photo
E. W. Hobson photo
Niccolo Machiavelli photo

„How we live is so different from how we ought to live that he who studies what ought to be done rather than what is done will learn the way to his downfall rather than to his preservation.“

—  Niccolo Machiavelli, The Prince
Context: Many have imagined republics and principalities which have never been seen or known to exist in reality; for how we live is so far removed from how we ought to live, that he who abandons what is done for what ought to be done, will rather bring about his own ruin than his preservation. Ch. 15

Thomas Little Heath photo
Thomas Little Heath photo
James Whitbread Lee Glaisher photo
Norbert Wiener photo

„Since Leibniz there has perhaps been no man who has had a full command of all the intellectual activity of his day. Since that time, science has been increasingly the task of specialists, in fields which show a tendency to grow progressively narrower… Today there are few scholars who can call themselves mathematicians or physicists or biologists without restriction. A man may be a topologist or a coleopterist. He will be filled with the jargon of his field, and will know all its literature and all its ramifications, but, more frequently than not, he will regard the next subject as something belonging to his colleague three doors down the corridor, and will consider any interest in it on his own part as an unwarrantable breach of privacy… There are fields of scientific work, as we shall see in the body of this book, which have been explored from the different sides of pure mathematics, statistics, electrical engineering, and neurophysiology; in which every single notion receives a separate name from each group, and in which important work has been triplicated or quadruplicated, while still other important work is delayed by the unavailability in one field of results that may have already become classical in the next field.
It is these boundary regions which offer the richest opportunities to the qualified investigator. They are at the same time the most refractory to the accepted techniques of mass attack and the division of labor. If the difficulty of a physiological problem is mathematical in essence, then physiologists ignorant of mathematics will get precisely as far as one physiologists ignorant of mathematics, and no further. If a physiologist who knows no mathematics works together with a mathematician who knows no physiology, the one will be unable to state his problem in terms that the other can manipulate, and the second will be unable to put the answers in any form that the first can understand… A proper exploration of these blank spaces on the map of science could only be made by a team of scientists, each a specialist in his own field but each possessing a thoroughly sound and trained acquaintance with the fields of his neighbors; all in the habit of working together, of knowing one another's intellectual customs, and of recognizing the significance of a colleague's new suggestion before it has taken on a full formal expression. The mathematician need not have the skill to conduct a physiological experiment, but he must have the skill to understand one, to criticize one, and to suggest one. The physiologist need not be able to prove a certain mathematical theorem, but he must be able to grasp its physiological significance and to tell the mathematician for what he should look. We had dreamed for years of an institution of independent scientists, working together in one of these backwoods of science, not as subordinates of some great executive officer, but joined by the desire, indeed by the spiritual necessity, to understand the region as a whole, and to lend one another the strength of that understanding.“

—  Norbert Wiener American mathematician 1894 - 1964
p. 2-4; As cited in: George Klir (2001) Facets of Systems Science, p. 47-48

E. W. Hobson photo

„The first period embraces the time between the first records of empirical determinations of the ratio of the circumference to the diameter of a circle until the invention of the Differential and Integral Calculus, in the middle of the seventeenth century. This period, in which the ideal of an exact construction was never entirely lost sight of, and was occasionally supposed to have been attained, was the geometrical period, in which the main activity consisted in the approximate determination of π by the calculation of the sides or the areas of regular polygons in- and circum-scribed to the circle. The theoretical groundwork of the method was the Greek method of Exhaustions. In the earlier part of the period the work of approximation was much hampered by the backward condition of arithmetic due to the fact that our present system of numerical notation had not yet been invented; but the closeness of the approximations obtained in spite of this great obstacle are truly surprising. In the later part of this first period methods were devised by which the approximations to the value of π were obtained which required only a fraction of the labour involved in the earlier calculations. At the end of the period the method was developed to so high a degree of perfection that no further advance could be hoped for on the lines laid down by the Greek Mathematicians; for further progress more powerful methods were required.“

—  E. W. Hobson British mathematician 1856 - 1933
pp. 10-11

Thomas Carlyle photo
Henry John Stephen Smith photo

„Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam egestas wisi a erat. Morbi imperdiet, mauris ac auctor dictum.“