„Judged by the only standards which are admissible in a pure doctrine of numbers i is imaginary in the same sense as the negative, the fraction, and the irrational, but in no other sense; all are alike mere symbols devised for the sake of representing the results of operations even when these results are not numbers (positive integers).“

—  Henry Burchard Fine, p. 86; Reported in Moritz (1914, 282)
Publicidade

Citações relacionadas

Everett Dean Martin photo
Publicidade
Thomas Little Heath photo

„It may be in some measure due to the defects of notation in his time that Diophantos will have in his solutions no numbers whatever except rational numbers, in [the non-numbers of] which, in addition to surds and imaginary quantities, he includes negative quantities…. Such equations then as lead to surd, imaginary, or negative roots he regards as useless for his purpose: the solution is in these cases ὰδοπος, impossible. So we find him describing the equation 4=4x+20 as ᾰτοπος because it would give x=-4. Diophantos makes it throughout his object to obtain solutions in rational numbers, and we find him frequently giving, as a preliminary, conditions which must be satisfied, which are the conditions of a result rational in Diophantos' sense. In the great majority of cases when Diophantos arrives in the course of a solution at an equation which would give an irrational result he retraces his steps and finds out how his equation has arisen, and how he may by altering the previous work substitute for it another which shall give a rational result. This gives rise, in general, to a subsidiary problem the solution of which ensures a rational result for the problem itself. Though, however, Diophantos has no notation for a surd, and does not admit surd results, it is scarcely true to say that he makes no use of quadratic equations which lead to such results. Thus, for example, in v. 33 he solves such an equation so far as to be able to see to what integers the solution would approximate most nearly.“

—  Thomas Little Heath British civil servant and academic 1861 - 1940
Ch. IV, p.82

B.F. Skinner photo
Robert H. Jackson photo
Bertrand Russell photo
Georg Cantor photo

„The transfinite numbers are in a certain sense themselves new irrationalities“

—  Georg Cantor mathematician, inventor of set theory 1845 - 1918
Context: The transfinite numbers are in a certain sense themselves new irrationalities and in fact in my opinion the best method of defining the finite irrational numbers is wholly dissimilar to, and I might even say in principle the same as, my method described above of introducing transfinite numbers. One can say unconditionally: the transfinite numbers stand or fall with the finite irrational numbers; they are like each other in their innermost being; for the former like the latter are definite delimited forms or modifications of the actual infinite. As quoted in Understanding the Infinite (1994) by Shaughan Lavine

Gottlob Frege photo
Alexander Calder photo
Carl Eckart photo
Everett Dean Martin photo
Franklin D. Roosevelt photo

„Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam egestas wisi a erat. Morbi imperdiet, mauris ac auctor dictum.“